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TURBULENT CONVECTION IN A VERTICAL TUBE

L. E. Ber

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 8, No. 4, pp. 74—85, 1967

Integral formulas expressing the theorems of momentum and kinetic
energy for the case of combined forced and free convection in

a vertical tube are obtained. These formulas can be used to cal-
culate the velocity distribution in the cross section of the tube in the
case of laminar, turbulent, and transitional flow regimes in the
presence and absence of internal heat sources in the liquid arbitrarily
distributed over the cross section, Integral formulas are derived for
the determination of the drag coefficient and heat transfer; these

are also valid for all flow regimes. The general formulas are used
for the calculation of specific cases. Turbulent viscosity in the case
of combined forced and free convection is discussed.

NOTATION

v0) ig the velocity of forced convection; vD s the velocity of free
convection; {vg is the mean velocity over cross section of tube;
T() is the temperature for forced convection; T Y s the temperature
for free couvection; Ty, is the temperature of tube wall; Ig is the
tube radius; vy is the turbulent viscosity; ¥ is the turbulent thermal
diffusivity; A is the constant axial temperature gradient on tube wall;
Py is the averaged pressure, corresponding to constant liquid tem-
perature; y is the distance from tube wall; y, is the dimensionless
distance from wall; r is the distance from axis; Q is the quantity of
heat produced by internal sources in unit volume of liquid in unit
time; R* is the Rayleigh number; z is the cocrdinate along tube axis,
directed upward;
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The mean temperature head is<T> — Tw. The dynamic velocity
v, is determined from the equation 2p0v*2/r0 = —_/;og — p, /oz.

1. Equations of problem. Turbulent viscosity, We
consider a steady-state-turbulent movement of liquid in
a vertical round tube in which the wall temperature
varies linearly along the tube. Let there also be a
constant vertical pressure gradient and internal heat
sources distributed arbitrarily, but axisymmetrically,
over the cross section. The liquid is assumed to be
mechanically incompressible, but thermally strained,
so that free convection is superimposed on the forced
flow. The flow is assumed to be axisymmetrical and
the averaged velocity vertical.

With these assumptions the equations of the problem
will be [1, 2]

V (pVa) = — 2R, — (G| R,)8,

V@ V0) = — PR,Q, -+ PR, u. (1.1)
Equations (1. 1) contain four unknown functions: u,
0, v¢, xt- The two equations (1. 1) are not sufficient
for their determination. Hence, we find v{ and y; by
analysis of experimental data and from some physical
considerations. The boundary condition is

u==0 when g =1, (1.2)

The temperature in the case of mixed convection
must be measured relative to a specially chosen mean
calorimetric temperature of the liquid.

If the functions vy and x; are known, then Egs. (1.1)
can be used to find all the dynamic and thermal char-
acteristics of turbulent convection in a vertical tube.

In the case of pure forced convection the turbulent viscosity
close to the tube wall is expressed satisfactorily by the function [3]

Vil v =44 (Ve — th Yoy) (1.3)
and in the core of the flow by the function
velv =14 R, (1 —EH(1--28) —1, (L4

Near the wall (1.4) becomes meaningless. Formulas (1. 3) and
(1.4) differ from the corresponding formulas obtained in [3] in that
for brevity the value of ®is substituted (x = 0.4), and in (1. 3) the
coefficient 11 is taken out of the brackets.

In the layer near the wall we take ¥ /v according to (1. 3) up to
the point of conjunction with (1.4), and in the core of the flow
according to (1.4). In Fig. 1the curves 1, 2, and 3 represent (1.3),
(1.4), and v;/v + 1, respectively, for R, = 314.25. A Reynolds
number R = 10* corresponds to the value of the parameter R, = 314.25
in the case of pure forced convection. We will regard the ratio
v /Xy = Py as constant. .

The situation is more complicated in the case of combined forced
and free turbulent convection. The shape of the velocity profile has
a significant effect on the development of turbulent pulsations and,
hence, of turbulent stresses in the flow.

As was shown in [1] and by the experimental data of [4,5]. in the
case where the flows of forced and free convection in the layer near
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the wall are countercurrent (R* < 0) there is additional disturbance of
the layer at the wall and an increase in the turbulent viscosity in this
layer, This leads to an increase in the resistance to the flow and an
increase in heat transfer. Conversely, when the flows near the wail
are coincident (case R* > 0) the turbulent puisations and, hence, the
turbulent viscosity in this layer are greatly reduced. A change in the
turbulent viscosity in the core of the flow has a very slight effect on
the drag and heat transfer.

This effect can be called disturbance or stabilization of the viscous
wall layer. We will try to take this effect into consideration by pro-
ceeding from the following considerations. Near the wall the ad-
ditional turbulent viscosity &/v will depend on the dimensionless
distance y, from the wall in the fourth degree [6], and outside the
wall layer &/v will become zero. This requirement is satisfied by
the function

e/ v =a MYy ye)* exp ( —yy bye) - (1.5)

Constants a and b are determined from experiments.

An investigation of the experimental data of [5] shows that in the
case where the flows of forced and free convection and the wall are
coincident the heat transfer gradually decreases with increase in the
free convection, the greatest reduction being 25-30% and occurring
when the forced and free convection are of the same order. This can
be used to determine @ and b in (1.5). If we puta = —4.4, b= 1.4
and calculate the heat transfer, then the calculated Nusselt number
will be 25% less than when g = 0.

When the velocity of free convection on the tube axis is the same
as that of forced convection, we can, in view of the above-mentioned
facts, put ¢ = ~4.4 and b = 1.4 with satisfactory accuracy if the flows
at the wall are concurrent; ¢ =4.4, b= 1.4 if the flows at the wall
are countercurrent. A graph of the function (1.5) fora = 4.4, b=
= 1.4 is shown by curve 4 in Fig. 1.
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Variables £ and y, are connected by the relationship Vu=R(1-E).
Figure 1, in addition to the scale for &, gives the additional scale
fory, for R, = 314.25.

As is shown below (see 1 3), when P=1, P, = 1, R, = 314.25,
Q.= 0, and free convection on the tube axis is equal to the forced
convection, i.e.,

[ u® ] =1u® (0]

for R;*= 1,1+ 10° and Ry = —4.2+10%, 1f Q,= 0.1R,, then this
equality is fulfilled when Ry*= 1.7.10°; if Q_= -0.1R_, when
Ry*= -1.90. 10% Figure 2 shows a plot of the coefficient g against
R* for these four cases. In each case we required that g = 4.4 for the
indicated values of R* and decreases by a factor of 10 if R* increases
or decreases by a factor of 10, The ascending branch of the curve

was given by the function

a=4.% exp [— ¢; (R* — R;*)4] (1.6)
and the descending branch by the function

a=4boxp [—c; (R* — R*)]. (LT

The coefficients ¢; and ¢;' were determined so that (1. 6) and (1. 7)
satisfied the above-indicated requirements. Expressions (1.6), (1. 7)
and coefficients ¢ and b in (1.5) must be regarded as provisional and
physical experiments will be required for their substantiation and
accurate verification.
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In Fig. 2 curves are plotted for the parameters 1(R*> 0, Q_= 0),
2(R*< 0, Q,=0), 3(R*>0, Q,=0.1R), 4 (R*< 0, Q= -0.IR,).
In every case P= 1, Py = 1, R, = 314. 25.

After calculating u 1)(0) and u(n)(O) with allowance for the correc-
tion to the turbulent viscosity we must find the values of Rj* and then
determine the position of the curves in Fig. 2. Knowing R;*, we
determine the correction to the turbulent viscosity by means of (1.5)
and expressions (1.6) and (1. 7). When R*> 0, Q,= 0, the coefficient
a < 0; whenR*< 0, Q, =0, the coefficient a > 0. When Q, 0 we
must use a more general rule: if the flows of forced and free con-
vection at the wall are coincident, then g < 0; if the flows at the
wall are countercurrent, then g > 0.

Equations (1. 1) are weakly linear. The nonlinearity is due to the
turbulent transfer coefficients. The principle of superposition of the
solutions of the homogeneous and inhomogeneous equations, or of
free and forced convection, can be applied to them only with some
reservation. This principle is used below for the solution of the posed
problem. Thus, some small error is introduced into the solution.

2. Theorems of momentum and kinetic energy. We
derive integral relationships expressing the theorems
of momentum and kinetic energy for combined turbu-
lent forced and free convection in a vertical tube.

Integrating the first of equations (1.1)from zero to ¢
and having in mind that the temperature in (1. 1) must
be measured relative to the mean temperature, we
find the distribution of tangential stresses at a dis-
tance £ from the axis:

- L L 9Py ro g
”_"—(g*PT )2 5t

+ 3(9“” Y—03)EdE. 2. 1)

Using the second of equations(1.1) we find the tem-
perature of the liquid, measured relative to the wall
temperature at a distance £ from the axis:

89V 0, = PR, J, (5 1). (2. 2)
In view of (2.2) we can bring (2. 1) to the form

T i 9poy 7o & (Ve N .
Tt ) T e (B0 B

GPvv B GPvo,

+ -QTO‘_JA (E: lj) — 2!‘(;&

J5 (8. 0. (2. 3)
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Substituting (2.3) into the relationship

17 v /
— &
and carrying out several transformations, inciuding
integration by parts, we obtain

(2. 4)

u® (0) + u® (0) = __Mg_’_ % dpo ) ot

9z | 2vo,

6Py (<8) — OW)E £de
1

2rov, 1-=wvfv
v

_GPCT 1 Edf dg I3 (E)EdE
2§[E”§1+V1/V 5(1"1“’1/.\’)5] A%/ " (2.5)

Putting G = 0 in (2. 5), we find the velocity on the
tube axis in the case of forced convection

1
dE
u® (0) = ]{*S%ﬁ;. (2.6)
0

Here we take into consideration the equality

(g+ 1 apa)_2v*2' 2.7)

po 24 ro

An analysis showed that with the adopted assump-
tions free convection will not create a flow of liquid
through the cross sectionof the tube if the temperature
is measured relative to the mean temperature given
by the equality

@Yy 8,

— [g (9(0; 1y 6,) pOE dEJ (i U(o)gdg)—l. . 8)

0 ]
Subtracting (2. 6) from (2. 5) and substituting the
value ({6) — 0), according to (2.8), after subjecting

(2. 8) to several transformations by using the second
of Egs. (1.1), we have

J1(E) J3(E)dE
ud(0) =GP WS T e X
1 1 E
S i ep([i{
14 v /v 2 ) E2 0}1+vl/v

] e -
1(1'}“71/\’)5 A+ 2%/

The integral relationship (2. 5) expresses the the-
orem of momentum. Equation (2. 9), like (2. 5), is
valid for laminar, turbulent, and transitional flow
regimes when the liquid does or does not contain in-
ternal heat sources, i.e., for all flow regimes for
which Egs. (1.1) are true.

We multiply the first of equations (1. 1) by v(°'1)£d£
and integrate it with respect to £ from zero to unity
and then, in view of the relationships

1

(vwgaz =0, < =2{wozde,

1

Sau“” (00D — (B3 EdE =0 (2. 10)
and (2.7) we have
%R‘R T G§(9‘°' v (0) uWEdE—
g
.
S(1+ )(‘?“(')) EdE=0 @.11)

0

The last of relationships (2. 10) can easily be ob-
tained from (2. 8).

Substitution of (2. 2) into (2.11) and the performance
of several transformations gives

R Jg () Ja(E)dE
3 GPS Mg 0E

(2.12)

o) (g s
i

The integral relationship (2. 12), like (2.5), is
valid for all flow regimes for which Egs, (1.1) are
true. The terms of Eq. (2.12) with accuracy to the
constant factor express the work of external pres-
sure forces, the Archimedean upthrust, and viscosity
forces, respectively.

In the case of pure forced convectlon (2. 12) takes
the form

(2.13)

£ %) () v

Subtracting (2. 13) from (2. 12) and taking into
account that

1
v du®  dulV
S(i—:-_v_> o e tdEi=0
o

we find

tnenee
GPS (e

(2. 14)

o) (4

0

8. Velocity distribution. We use the above-derived integral
relationships to determine the velocity in the case of combined
forced and free convection. We first find the velocity for forced
convection.

If free motion is imposed on the forced motion, the turbulent
viscosity is altered and, hence, the velocity is also altered. For
instance, u (0) =20 whenR_= 314.25 (R= 104) If we putg=~4.4
and b= 1.4 in (1.5) and carry out the corresponding calculations we
obtain ul® )(O) = 35.0, which is 75% greater than the previous value.
If we take g = 4.4, b= 1.4, we obtain u{’)(0) = 16.0, i.e., 20%
smaller.

The logarithmic formulas and the one-seventh law, which satis-
factorily represent the velocity distribution in the core of a turbulent
flow in a tube, become invalid close to the wall. The formula de-
termined in [3], which is true over the whole cross section of the
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tube, is cumbersome and, hence, is not at all convenient to work

with. Below we obtain a simple and convenient formula which provides

a good representation of the velocity distribution over the whole cross

section of the tube, including the immediate vicinity of the wall, and

which satisfies the boundary condition on the wall.
We will seek the velocity profile in the tube for turbulent flow in
the form

1
w0 = o[-+ -] (CI

where n and a; are undetermined coefficients. To determine n we
calculate the mean velocity <v> over the cross section and the tan-
gential stress T, on the wall by using (3. 1) and substitute the values
in the expression for the drag coefficient f = 81.,/p ¢v >, On the
other hand, the value of the drag coefficient can be found from the
empirical Blasius formula

f=0.316 R~ (2.3 10° < R << 10%) (3.2)

or the Filipenko formula 7], which is suitable for a wide range of
Reynolds numbers,

= (1.82 Ig R — 1.64) 2, (8.3)
Equating these values for the drag coefficient we find

n =15 [(Tk — 8) + V (Tk — 4% — 32k] - 38.4)
Here
k= 0.00988 R™ or k=1, R (1.821gR — 1.64)2, (3.5)

respectively, for faccording to (3.2) or (3.3).
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If the turbulent viscosity in the tube is known there is no need to
use empirical data for f . The drag coefficient can be determined
from the formula derived below (see T 4).

To determine g; we can use relationship (2. 8); we determine
uronax from (2. 6) and find @, from the equality

Ysay=ull) . (3.6)

As heat transfer calculations show, (3. 1) is almost as accurate as

the formula from [3]. It follows from (3.4) that if R = 10%, then
=20.6; if R=25+10, thenn=43; if R=10°, thenn = 128,

We find the velocity distribution for combined laminar forced and
free convection. The functions in the form of which we seek the
solution must satisfy the boundary condition of attachment of the
liguid to the wall and the condition of closure of the free-convection
flow. As an approximating function we take

w4 (L — 8 (138 + A, (1 — B9 (1 — 7, ). (3.7)

Here Ay and Ay are unknown coefficients. We substitute function
(3.7) and

L Y, R (1 — EY) (3.8)

into(2.9)and (2.14)after puttingw;// = 0 in them, and from these two
equations we find A; and A,. Such calculations show that the coef-
ficient Ay must be found from a quadratic equation containing the
parameters GP, Q.. and R_. Then A, is determined from a linear
equation. Since the equation for A, is quadratic, then for given
parameters GP and Q, we obtain two values of A, and then we find

two values of A,. One pair of the coefficients A; and A, (we will call
it the main pair) gives practically complete agreement with the exact
solution [8, 9]. The second (subsidiary) pair gives poor agreement with
the solution in [8,8]. Of the two coefficients A; we must take the

! smaller in modulus as the main one. A comparison with the exact
' solution where the values of the parameters are —100 = R* = 10%,

Qs =10, Qu=1Y, Ry, Qu="15H"s Qu=75,H,

shows that the greatest deviation from the accurate result does not
exceed 0.5% . In most cases the deviation is much smaller.
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Since this method of solution has proved satisfactory we find the
velocity for combined wrbulent forced and free convection. The
approximating function for turbulent free convection must satisfy the
boundary condition and the condition of closure of the free-convection
flow; it must also reflect the presence of a large velocity gradient at
the wail, We put

2V == A (4 — B0 (1 — 175 £, (3.9)

As u(o) we use formula (3. 1), The drag coefficient f is determined
from the formula derived below (see T 4). The integrals contained in
(2.9) and (2. 14) are calculated by numerical integration using (1. 3)
and (1.4). The results of the calculations are as follows.

With R, = 314.25, P, = 1, P = 1 we calculated u"(0) = A, by
means of (2.9) and (2. 14). The formulas are of the same type and
the coefficients in them do not differ by more than §%. The arith-
metic mean of these coefficients is taken. In this way we find

 (—3.20107 + 1.801075Q,) 61

Ty 0.7 1O—SGP+'1 (3, 10)

So far we have ignored disturbance or stabilization of the layer
near the wall. We will now take this into account. The coefficient
Ay is calculated by using (2.9), (2. 14), (1.3), (1. 4) and (1.5) with
R,=314.25, P =1, P=1 g=4.4, b= 14,

_ (—2.10-107 4 1.35-1075 Q) GP
A= 0.6-10 5GP -1 N -39

With R_ = 314. 25, Pt= 1, P=1, a = ~4.4, b= 1.4 we have

(- 6.20-407 4 2.60-107Q,) ¢
h= U8 105GP + 1 . (3.12)

Formulas (3. 11y and (3. 12) are true only for particular values of
R* since for each R* there is a particular ¢ (Fig. 2). For other ¢ we
carried out similar calculations and obtained subsidiary formulas,

v
90 7
70 = i
F i o S =1 £
2 .
w we ¢
Fig. 5

which are also true for particular R*. In this way we find several
values of A;, depending on R*, Figure 3 shows the relationship A, =
= Ay(R*) for different combinations of values of the parameters:

1 >0, Q,=0, a=0),

2(R* <0, Qu=0, a=0),

3 (*>0, Qu=0, a<0),
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2 (B* <0, Qy=0, a>0),
5 (R*>0, Qu=01R,, a=0),
6 (R*<0, Qu=—01R,, a=0),
7 (R*>0,Qu=0.1R,, a>0),
8 (R*<0, Qu=—0.1R,, a>0).
We took into account the relationship between ¢ and R* according

to Fig. 2. In every case P =1, P, = 1, R, = 314.25. In the deduction
of (3. 10)~(3. 12) we took Q, = const.

26 ; 7/
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Fig. 6

4, Drag law., We determine the drag law for com-
bined forced and free convection in a vertical tube.
The mean velocity over the cross section of the tube
will be

1

wy =2\ponzaz.

9

4.1)

Performing several transformations and using
(2. 4), (2.7), and the first of equalities (2. 10}, we find

1
_ ro? ap E3dE
(o) =— (Pog+—az—o)g——1+vt/v- (4.2)

2‘Vpo
0

According to the definition of the drag coefficient,
we have

(4. 3)

— 2ry . 9po
f=— 1apo () (pog—{— a9z )

Eliminating the factor in the parentheses from (4.2)
and (4.3) we obtain

1

1 R ¥dg
7= Egm . (4. 4)
It follows from (4. 3) and (2.7) that
R,=RVuf . (4. 5)

If we eliminate the Reynolds number R from (4. 4)
and (4. 5) we find

f=8/JR?, (4.6)
where J denotes the integral contained in (4, 4). ¥ the
parameter R, or (pyg + 0p, /9z) is prescribed, we find
the integral J by numerical integration and then, ac-
cording to (4.6), we find f . After finding J and f, we
can determine R from (4. 4) or (4. 5).

Equality (4.4) is valid for laminar, turbulent, and transitional flow
regimes. In the case of laminar flow we can derive the Poiseuille
formula from (4.4):

1/ f="1a R. 4.0

We calculated f and R for R, = 314.25, using (1.3) and (1. 4), and
found that f = 0.0316, R = 10% If we take into account disturbance or

stabilization of the wall layer according to (1.5), then forR, = 314,25,
g=4.4, b= 1.4 we have f = 0. 0495, R= 8000, i.e., in thgs case R
is 20% less than when ¢ = 0. With the same R,andg=-4.4, b= 1.4
the calculations give: f = 0. 0102, R= 17 600, i.e., R is increased by
76% .

Thus, free convection affects the drag through disturbance or
stabilization of the wall layer and this effect is fairly significant. In
the case of turbulent flow in a verrical tube the drag can be regulated
by heating or cooling the wail.

Figure 4 shows fasa functionof R* for R, = 314.25, Q, = 0 with due
regard to (1. 3), (1.4), (1.5), and Fig. 2. Curve 1isfor R*> 0 and
curve 2 for R* < 0.

5. Heat transfer in absence of internal heat
sources. We calculate the heat transfer in the case of
combined turbulent forced and free convection in a
vertical tube without internal heat sources in the liquid.

By definition the Nusselt number is

2ryq
N=—nl®
T ATy —T,)

. (5.1)
Using the second of Egs. (1.1) we find the heat
flux density qw on the wall for @, = 0:

Gu=— 1, pCpdry, V> . (5.2)

Substituting into (5.1) equality (5.2) and the expres-
sion for the mean temperature according to heat con-
tent

1

(T —Ty=25 (1 — 1) wo.Ede (5.3)
. 0
and taking into account the relationship
v,=<dVI8 (5. 4)
we obtain
1
1 Je? () 4§ A i JR2E)dE .5
N _ZS(1+Plvt/v)’é R S(1+Pw,/v)5' (5. 5)

[ 0

Equality (5. 5) is valid for all flow regimes for
which Egs. (1.1) are true in the case @, = 0.

Using (5.5) we caun find how the heat transfer is affected by the
free motion superimposed on the forced motion. We consider first
the combination of laminar forced and free convection.

24

[
2 =g
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Lt 7] T
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Fig. 7

If the flows of forced and free convection at the wall are counter-
current (R* < 0), then the mean temperature of the liquid increases
[in formula (5.5) in this case J; () > 03, which, as (5. 1) shows, leads
to a reduction of N. If the flows at the wall are coincident (R* > 0),
then the mean temperature of the liquid decreases [in (5.5) s (§) <
< 0], which leads to an increase of N. At the same time, free con-
vection superimposed on forced convection, with the adopted as-
sumptions (averaged velocity parallel to tube axis, constant vertical
temperature gradient on walls), does not affect the heat flux density
on the wall. This is apparent from (5. 2) at least [see also [8], Chap.
3, §8].

The relationship between the Nusselt number N and the Rayleigh
number R* was calculated from (5.5) for R* > 0 and R* < 0. We
used the formula f = 64R™* or the relationship derived from it and
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5.4), viz., 2R= R*Z, which is valid for laminar forced flow, and
also for combined laminar forced and free flow (1 4). The relation-
ship between N and R* calculated in this way agrees almost com-
pletely with that found in [9, 10]. The curves representing this
relationship for R* > 0 and R* < 0 agree satisfactorily with the ex-
perimental data given in [9, 10]. In the case of turbulent motion

as (5.5) shows, free convection affects the heat transfer in two ways.

If the flows of forced and free convection at the wall are counter-
current (R* < 0), the turbulent viscosity at the wall is increased and
this intensifies heat transfer. On the other hand, in this case the
mean temperature of the liquid is increased, which leads to a re-
duction of N. Calculation or experiment would show which of these
factors predominates.

If the flows at the wall are coincident (R* > 0) the turbulent
viscosity at the wall is reduced and N is also reduced. In this case,
however, the mean temperature of the liquid is reduced, which
leads to an increase in N.

We calculated the Nusselt number for R= 314.25, Pp =1, P= 1,
b= 1.4, ¢ = 4.4 (the flows at the wall are countercurrent). The
result was as follows: N = 34.9, i.e., 1% greater than when q = 0.
When R = 314. 25, P,=1, P=1 b= 14, g= -4.4 (the flows at
the wall are coincident) the number N = 25.9, i.e., 25% less than
when ¢ = 0.

Figure 5 shows N as a function of R* curve 1 is for the case R* > 0
and curve 2 for R* < 0. In the calculations we took into account (1. 3),
(1.4), (1.5), (1.6), and (1. 7).

A comparison of the heat transfer in laminar and turbulent flow
regimes clearly shows that in the case R* > 0 free convection inten-

sifies heat transfer in a laminar flow and reduces it in a turbulent flow.

In the case R* < 0 free convection reduces heat transfer in a laminar
flow and increases it in a turbulent flow. This can be attributed to

the fact that in the case of laminar flow one factor due to free con-
vection affects the heat transfer, whereas in the case of turbulent flow
there is a second effect (disturbance or stabilization of the wall layer),
and this second effect predominates.

When the parameter R, has values greater than 314. 25, free con-
vection will be comparable with forced convection at higher Rayleigh
numbers than when R, = 314. 25. Hence, for R_greater than 314, 25,
the curves N = N (R¥) will be like that illustrated in Fig. 5, but will
be shifted upwards and to the right.

6. Heat transfer in presence of internal heat
sources. In [11] an integral Lyon relationship for
calculating heat transfer in the absence of internal
heat sources in the liquid was extended to the case of
a liquid containing heat sources, The flow of liquid in
the tube was assumed to be purely forced. We extend
these integral relationships to combined forced and
free’convection in a vertical tube.

Integrating the energy equation—the second of Egs.
(1.1)—in the case of uniformly distributed internal heat
sources of power Q and constant heat flux density gy
on the wall we find

Js (€) d§
(t-+%/0E

+

g
T Ty— — 241{'0 S

1
g
Qro? S J7(€) d

_ Ji(E)de (6.1)
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Substituting (6.1) into the expression for the mean
temperature according to heat content (5. 3) and per-
forming several transformations we obtain

baro ¢ T (8) a%
Ty—7,=-2 : —
I=To=— §(1+xt/x)&

_20m (L@ TR

NS WP (6.2)

We put g, = 0 in (6. 2) and then we have

1
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where T,y denotes the adiabatic wall temperature,

If we assume the density of the internal heat sources
to be arbitrary over the cross section of the tube,
similar calculations will give

1
. 2e 1
T —Tow= =T\ 1o B

1 g
x[zf,,(g)gggdg_ Qf;d&]dg. (6. 4)
[ ¢ :
We now subtract (6. 2) from (6. 3)
4au70 ¢ IR (E)dE
s —_ w' 0 3 . 6.5
To—Ta A S(1+xg/x)a (6.5)
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It is clear from (6. 5) that when the liquid contains
internal heat sources the heat flux density q,, on the
wall will be proportional to the temperature difference
(Tgw = Ty), and not the difference ((T) — Ty), as is
the case in the absence of sources. From (6. 5) we
have

1
o0 e s
v =W e Y=gy (60

1]

Here N* is the Nusselt number.

If the heat transfer coefficient « is referred, as
usual, to the temperature difference ((T) - T), the
Nusselt number will be

,1_:23*-;&:@__
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Here z is the relative density of the internal heat
sources,

At a certain value of z; the Nusselt number, de-
termined from (6.7), will become infinite. Hence, in
the case of internal heat sources in the liquid the heat
transfer will be characterized not by N, but by the
ratio {11]

(T e —<T)
- (‘T—‘—-—aw“ Tw) = ZlfVOATa,
A

ATq = og (KI5 — Taw)» (8.8)
Here AT, is the dimensionless difference between
the mean calorimetric temperature of the liquid and
the adiabatic wall temperature; N;is the Nusselt num-
ber for a flow without internal sources. In [11] the
relationship between this quantity and the Reynolds
and Prandtl numbers was calculated for pure forced
turbulent flow. Below we give the results of calcula-
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tions of the relationship between this quantity and the
Rayleigh number in the case of combined forced and
free convection in a vertical tube.

Figure 6 shows

(Taw —<T>)

C=— 72 2
(Taw_‘T'w)Zl

(6.9)
as a function of R* for combined laminar forced and free convection
in a vertical tube with Q, = £R_/4; curve lisfor R*> 0, Q,=R,/4
and curve 2 for R*< 0, Q.= —R*/4. We note that Q, < 0 when
R* < 0, although the heat sources are positive (Q > 0). When R*—> 0,
C tends to the limit 3/11, corresponding to pure forced laminar fiow.
Since Q, is prescribed, then z; will be determined from the relation-
ship :

al(a—1D=Q. Vsl - (6. 10)

In the deduction of (6. 10) we used (6. 11). Relationship (6. 10
applies to both laminar and turbulent flows. :

In the case of combined forced and free convection, as distinct
from pure forced convection, the source density Q, has to be pre-
scribed if the coefficients in the expression for the free convection
are to be found.

The quantity C is equal to the ratio of the integrals contained in
expression (6. 7). In combined turbulent forced and free convection
C is affected by the same two factors which affect N in the case of
the absence of internal sources. If the heat flux density is positive
and sufficiently high (for instance, Q,= 0.1IR,}, then the liquid in
the center of the tube will be hotter than at the wall and, hence,
when 8 > 0 free convection will be upward in the center of the tube
and downward at the wall, irrespective of the sign of the Rayleigh
number. If the forced convection of the liquid is upward ((v) > 0),
then at the wall the flows will be countercurrent. This is obvious
from expression (3. 10) and from Fig. 3.

Taking into account the correction to the turbulent viscosity,
according,to (1.5)—(1.7), we calculated f, R, a;, n, and A, from
the corresponding formulas, and then the value of C from (6. 9) for
P=1, p=1, R,=314.25, Q,=:0.1R,. Figure 7 shows the calcu-
lated relationship between C and R* Cuwrve 1is for R*> 0 and Q* =

=0.1R,; curve 2 is forR* < 0 and Q,= -0.1R,. In both cases the flows

at the wall are countercurrent and, hence, in both case ¢ > 0 in
expression (1.9).

We find the density of internal heat sources in the flow of a liquid
through a tube without heat transfer—the walls are thermally insulat-

ed. In this case the quantity of heat from the sources per unit volume of
the liquid is equal to the amount of heat removed by the flow from unit

volume.
Integration of the energy equation with Q = const gives

Yy peyArg (o> = — gy -+ M2 Qros (6. 11
Putting qy = 0 and using (5.4) we find
Qu=V8&/F - (6.12)

The drag coefficient f is found from formuia (4. 6).
For laminar flow—forced convection or combined forced and free
convection—(4.7) is valid. Then (6.12) gives

Qu=ViER="4R,. (6. 13)

In the case of turbulent flow for R, = 314. 25, according to (4. 6),
we have f = 0. 0316 and, using (6. 12), we find Q,= 15.9, i.e.,
approximately R, /19.75.

Thus, the procedure for the solution of the posed problem is as
follows. From the given value of dpy /dz we find R, from expression
(2.7). Using the parameter R, we find f and R from formulas (4¢.4)—
(4. 6) and u(0)(0) from formula (2. 6). From the found value of the
Reynolds number R we determine the index n from (3.4). Knowing
ulo )(0), we calculate g, from (3.8). From the prescribed parameters

P, P;, and R, we find the coefficient A;, i.e., an expression of the
form (3.10), by using the integral relationships (2. 9) or (2. 14). We
find the correction to the turbulent viscosity due to disturbance or
stabilization of the viscous wall layer by menas of (1.5) for any a,
e.g., a = 4.4. Using this correction we again find f, R, a;, and n
from the above-mentioned formulas and calculate expressions of
the form (3. 11), each of which is true only for a particular value of
R%, since for each R* there is a particular ¢. Using an expression of
the form (3. 11) with prescribed Q, we determine the value of the
Rayleigh number R;* for which free convection is equal to the forced
convection, i.e., u(l)(O) =y )(0); we determine the position of the
curves in Fig. 2. In this way we find several values of A, in relation
to R*,

To determine the heat transfer in the case of absence of internal
heat sources we calculate the integral (5.5) with inroduction of the
correction to the turbulent viscosity. In the case of the presence of
internal heat sources we must first find the correction to the turbulent
viscosity from the prescribed P, Py, R,, and Q*, as in the case Q=
= 0; we then find C, which characterizes the heat transfer in the case
Q, =0, from (6.9).

The author thanks G. A. Ostroumov, E. M. Zhukhovitskii, and
B. S. Petukhov for discussion of this work.
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