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T U R B U L E N T  C O N V E C T I O N  IN A V E R T I C A L  T U B E  

L.  E .  B e r  

Z h u r n a l  P r i k l a d n o i  M e k h a n i k i  i T e k h n i c h e s k o i  F i z i k i ,  V o l .  

Integral formulas expressing the theorems of momentum and kinetic 
energy for the case of combined forced and flee convection in 
a vertical tube are obtained. These formulas can be u~ed to cal- 
culate the velocity distribution in the cross section of the tube in the 
case of laminar, turbulent, and transitional flow regimes in the 
presence and absence of internal heat sources in the liquid arbitrarily 
distributed over the cross section, Integral formulas are derived for 
the determination of the drag coefficient and heat transfer; these 
are also valid for all flow regimes. The general formulas are used 
for the calculation of specific cases. Turbulent viscosity in the case 
of combined forced and free convection is discussed. 

NOTATION 

v (~ is the velocity of forced convection; v (1) is the velocity of free 
convection; <v~ is the mean velocity over cross section of tube; 
T (~ is the temperature for forced convection; T (1) is the temperature 
for free convection; T w is the temperature of tube wall; r0 is the 
tube radius; v t is the turbulent viscosity; • is the turbulent thermal 
diffusivity; A is the constant axial temperature gradient on tube wall; 
P0 is the averaged pressure, corresponding to constant liquid tem- 
perature; y is the distance from tube wall; y. is the dimensi0nless 
distance from wall; r is the distance from axis; Q is the quantity of 
heat produced by internal sources in unit volume of liquid in unit 
time; R* is the Rayleigh number; z is the coordinate along tube axis, 
directed upward; 

u (~ ~ v(~ uft), ~ v(r)  v(OA) ~ v :o) @ v (r) , 

y ,  ' ~). ' U(O,I) ~ u(O)_~_ U(1) 

v(r0 v 0) wfO,U = w(O) q- w(1), 
wit) 

w"~ iv> ' ~ @ - ) '  T(O,r)=T(O)_}_T(r), 

7' r vt ~t 
O~_lr-~-'  ~ =  r o '  ~ 1 + ~ - ,  ~ - = t + - - ~ - ,  

g~Ar0 a v v t P 

v.ro iv > 2to O 
1~* ~ GP, R .  =_ --v 1=: ~ - - v  Q* ~ ' ' poCpAv', ' 

?;..lI 
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1~ 0 

Y~ (~) ~ f w(~ ~d~, 
o 

0 o 

8, No .  4 ,  p p .  7 4 - 8 5 ,  1967  

The mean temperature head is . iT)  - T w. The dynamic velocity 
v.  is determined from the equation 2p0v. //r0 - - P 0 g  -- 0P0 ]~}Z' 

1. E q u a t i o n s  o f  p r o b l e m .  T u r b u l e n t  v i s c o s i t y ,  We 

c o n s i d e r  a s t e a d y - s t a t e , t u r b u l e n t  m o v e m e n t  of  l i q u i d  in  

a v e r t i c a l  r o u n d  t u b e  in  w h i c h  t h e  w a l l  t e m p e r a t u r e  

v a r i e s  l i n e a r l y  a l o n g  t h e  t u b e .  L e t  t h e r e  a l s o  b e  a 

c o n s t a n t  v e r t i c a l  p r e s s u r e  g r a d i e n t  a n d  i n t e r n a l  h e a t  

s o u r c e s  d i s t r i b u t e d  a r b i t r a r i l y ,  b u t  a x i s y m m e t r i c a l l y ,  

o v e r  t h e  c r o s s  s e c t i o n .  T h e  l i q u i d  i s  a s s u m e d  to  b e  

m e c h a n i c a l l y  i n c o m p r e s s i b l e ,  b u t  t h e r m a l l y  s t r a i n e d ,  

s o  t h a t  f r e e  c o n v e c t i o n  i s  s u p e r i m p o s e d  o n  t h e  f o r c e d  

f l o w .  T h e  f l o w  i s  a s s u m e d  to  b e  a x i s y m m e t r i c a l  a n d  

t h e  a v e r a g e d  v e l o c i t y  v e r t i c a l .  

W i t h  t h e s e  a s s u m p t i o n s  t h e  e q u a t i o n s  of  t h e  p r o b l e m  

w i l l  b e  [ 1 , 2 ]  

V (~Vu)  = - -  2 R , - -  (G / R , )  0 .  

V ( ~ V 0 )  = - -  P R . Q  a + p t t , u .  ( 1 . 1 )  

E q u a t i o n s  ( 1 . 1 )  c o n t a i n  f o u r  u n k n o w n  f u n c t i o n s :  u ,  

0,  v t ,  • T h e  t w o  e q u a t i o n s  ( 1 . 1 )  a r e  n o t  s u f f i c i e n t  

f o r  t h e i r  d e t e r m i n a t i o n .  H e n c e ,  w e  f i n d  v t a n d  Xt b y  

a n a l y s i s  o f  e x p e r i m e n t a l  d a t a  a n d  f r o m  s o m e  p h y s i c a l  

c o n s i d e r a t i o n s .  T h e  b o u n d a r y  c o n d i t i o n  i s  

u - 0  w h e n  ~ - -  t .  ( 1 . 2 )  

T h e  t e m p e r a t u r e  i n  t h e  c a s e  o f  m i x e d  c o n v e c t i o n  

m u s t  b e  m e a s u r e d  r e I a t i v e  to  a s p e c i a l l y  c h o s e n  m e a n  

c a l o r i m e t r i c  t e m p e r a t u r e  of  t h e  l i q u i d .  

If t h e  f u n c t i o n s  v t a n d  Xt a r e  k n o w n ,  t h e n  E q s .  ( 1 . 1 )  

c a n  b e  u s e d  to  f i n d  a l l  t h e  d y n a m i c  a n d  t h e r m a l  c h a r -  

a c t e r i s t i c s  o f  t u r b u l e n t  c o n v e c t i o n  in  a v e r t i c a l  t u b e .  
In the case of pure forced convection the turbulent viscosity 

close to the tube wall is expressed satisfactorily by the function [3] 

V t / V = 4 . 4  ( 1 / u y  , - -  th  1/n  ~/,) ( 1 . 3 )  

and in the core of the flow by the function 

V t / V = 1/I5 H .  ( t  - -  ~2) ( t  -',- 2~  2) - -  1 . ( l .  4 )  

Near the wall (1.4) becomes meaningless. Formulas (1.8) and 
(1.4) differ from the corresponding formulas obtained in [3] in that 
for brevity the value of ~ i s  substituted (~ = 0.4), and in (1.3) the 
coefficient 11 is taken out of the brackets. 

In the layer near the wall we take u t / v  according to (1.3) up to 
the point of conjunction with (1.4), and in the core of the flow 
according to (1. 4). In Fig. 1 the curves 1, 2, and 3 represent (1.3), 
(1.4), and u t / v  + 1, respectively, for R. = 314.25. A Reynolds 
number R = 10 a corresponds to the value of the parameter R. = 314.2g 
in the case of pure forced convection. We will regard the ratio 
v t /Xt  ~- Pt as constant. 

The situation is more complicated in the case of combined forced 
and free turbuleur convection. Tke shape of the velocity profile has 
a significant effect on the development of tttrbulent pulsations and, 
hence, of turbulent stresses in the flow, 

As was shown in [1] and by the experimental data of [4, 5], in the 
case where the flows of forced and free convection in the layer near 



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 49 

the wall are countercurrent (R* < 0) there is additional disturbance of 
the layer at the wall and an increase in the turbulent viscosity in this 
layer. This leads to an increase in the resistance to the flow and an 
increase in heat transfer. Conversely, when the flows near the wall 
are coincident (case R* > 0) the turbulent pulsations and, hence, the 
turbulent viscosity in this Iayer are greatly reduced, k change in the 
turbulent viscosity in the core of the flow has a very slight effect on 
the drag and heat transfer. 

This effect can he called disturbance or stabilization of the viscous 
wall layer. We will try to take this effect into consideration by pro- 
ceeding from the following considerations. Near the wall the ad- 
ditional turbulent viscosity g/u will depend on the dimensionless 
distance y. from the wall in the fourth degree [6], and outside the 

wall layer s l y  will become zero, This requirement is satisfied by 
the function 

I v = a (It  n y , )~  exp ( --1/n b y , )  . (1.5) 

Constants a and b are determined from experiments. 
An investigation of the experimental data of [5] shows that in the 

case where the flows of forced and free convection and the wall are 
coincident the heat transfer gradually decreases with increase in the 
free convection, the greatest reduction being 25-30~ and occurring 
when the forced and free convection are of the same order, rhis can 
be used to determine a and b in (1.5). If we put a = --4.4, b = 1.4 

and calculate the heat transfer, then the calculated Nusselt number 
will be 25~ less than when a = O. 

When the velocity of free convection on the tube axis is the same 
as that of forced convection, we can, in view of the above-mentioned 
facts, put a = -4 .4  and b = 1.4 with satisfactory accuracy if the flows 

at the wall are concurrent; a = 4 .4 ,  b = 1.4 if the flows at the wall 
are eountereurrent. A graph of the function (1.5) for a = 4.4, b = 
= 1.4 is shown by curve 4 in Fig. 1. 
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Variables ~ and y, are connected by the relationship y,= R,(1 - ~). 
Figure 1, in addition to the scale for ~, gives the additional scale 
for y, for R. = 314.25. 

As is shown below ( see �82  whenP= 1, Pt = 1, R.= 314.25, 
Q. = 0, and free convection on the tube axis is equal to the forced 
convection, i . e . ,  

I J*)  (o) 1 = I u (~ (0) 1 

for R**= 1 .1 .  105 and Rz* = --4.2"104. If Q. = O . 1 R . ,  then this 
equality is fulfilled when Ra* = 1. 7. 10 s ; if Q. = -0 .1R . ,  when 
R 4 .  = - 1.90 �9 10  4.  Figure 2 shows a plot of the coefficient a against 
R* for these four cases. In each case we required that a = 4.4 for the 
indicated values of R* and decreases by a factor of 10 if R* increases 
or decreases by a factor of 10. The ascending branch of the curve 

was given by the function 

a = 4.4 exp {-- c i (R* --  Ri*)q (I. 6) 

and the descending branch by the function 

a = 4.4exp [-- q '  (R*- -  R~*)~]. (1.7) 

The coefficients c i and c i '  were determined so that (1.6) and (1. 7) 
satisfied the above-indicated requirements. Expressions (1.6), (1.7) 
and coefficients a and b in (1.5) must be regarded as provisional and 
physical experiments will be required for their substantiation and 
accurate verification. 
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In Fig. 2 curves are plotted for the parameters 1 (R* > 0, Q. = 0), 
2(R*< 0, Q.= 0), 3(R*> 0, Q.= 0.1R.),  4(R*< 0, Q.= -OAR.). 
In every ca seP =  1, Pt = 1, R.= 314.25. 

After calculating u(1)(0) and u(~ with allowance for the correc- 
tion to the turbulent viscosity we must find the values of Ri* and then 
determine the position of the curves in Fig. 2. Knowing Ri*, we 
determine the correction to the turbulent viscosity by means of (1, 5) 
and expressions (1.6) and (1. 7). When R* > 0, Q. = 0, the coefficient 
a < 0; whenR*< 0, Q.= 0, the coefficienta > 0. When Q . ~ 0  we 
must use a more general rule: if the flows of forced and free con- 
vection at the wall are coincident, then a < 0; if the flows at the 
wall are eountercurrent, then a > 0. 

Equations (1. 1) are weakly linear. The nonlinearity is due to the 
turbulent transfer coefficients. The principle of superposition of the 
solutions of the homogeneous and inhomogeneous equations, or of 
free and forced convection, can be applied to them only with some 
reservation. This principle is used below for the solution of the posed 
problem. Thus, some small error is introduced into the solution. 

2. T h e o r e m s  o f  m o m e n t u m  a n d  k i n e t i c  e n e r g y .  W e  

d e r i v e  i n t e g r a l  r e l a t i o n s h i p s  e x p r e s s i n g  t h e  t h e o r e m s  

o f  m o m e n t u m  and  k i n e t i c  e n e r g y  f o r  c o m b i n e d  t u r b u -  

l e n t  f o r c e d  and  f r e e  c o n v e c t i o n  in  a v e r t i c a l  t u b e .  

I n t e g r a t i n g  t h e  f i r s t  of e q u a t i o n s  ( 1 . 1 ) f r o m  z e r o  to 

and  h a v i n g  i n  m i n d  t h a t  t he  t e m p e r a t u r e  in  (1. ! )  m u s t  

be  m e a s u r e d  r e l a t i v e  to t h e  m e a n  t e m p e r a t u r e ,  w e  

f i n d  t h e  d i s t r i b u t i o n  of  t a n g e n t i a l  s t r e s s e s  a t  a d i s -  

t a n c e  ~ f r o m  t h e  a x i s :  

o 

(2. i)  

U s i n g  t h e  s e c o n d  of e q u a t i o n s  (1 .1 )  w e  f i n d  t h e  t e m -  

p e r a t u r e  of  t h e  l i q u i d ,  m e a s u r e d  r e l a t i v e  to  t he  w a l l  

t e m p e r a t u r e  a t  a d i s t a n c e  ~ f r o m  t h e  a x i s :  

9~0, 1 ) _ _  0~ = P R . o q  (~, t ) .  ( 2 . 2 )  

In  v i e w  of  ( 2 . 2 )  w e  c a n  b r i n g  ( 2 . 1 )  to  t he  f o r m  

T , i Opo \ r o  ~ Gv 2 
r , o = - -  ig + -o T-~ )  T ~ .... ~ ( < o ~  .... % ) ~  + 

GPvv. .~  T ~ GP'vv ,  (2.3) 
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Subst i tu t ing (2.3) into the r e l a t i onsh ip  

po ~ 1@ -~- (2.4) 

and c a r r y i n g  out s e v e r a l  t r a n s f o r m a t i o n s ,  inc lud ing  
in t eg ra t i on  by pa r t s ,  we obta in  

t Opo ~ ro~ 

1 CP Z (<0> -- Ow) 

+ ~ ~f ~ l -b ,h/~ 

GP~[ t [ ~d~ d~ . I .~(~)~r (2.5) 

o o 1 

Put t ing  G = 0 in  (2.5),  we f ind the ve loc i ty  on the 
tube axis in the case  of fo rced  convect ion  

1 

o 

(2.6) 

Here  we take into cons ide r a t i on  the equa l i ty  

[ t Op .~=2v ,~  
\g + ~ "-~-/ ro ' 

(2.7) 

An ana ly s i s  showed that with the adopted a s s u m p -  
t ions  f r ee  convect ion  wil l  not c rea te  a flow of l iquid 
through the c r o s s  sec t ion  of the tube if the t e m p e r a t u r e  
is  m e a s u r e d  re la t ive  to the m e a n  t e m p e r a t u r e  given 
by the equal i ty  

t l 

0 0 

Subt rac t ing  (2.6) f rom (2.5) and subs t i tu t ing  the 
va lue  (<0)  - 0w) , accord ing  to (2.8),  af ter  sub jec t ing  
(2.8) to s e v e r a l  t r a n s f o r m a t i o n s  by us ing  the second 
of Eqs.  (1.1),  we have 

i 

(i +~t/X) 5 x 

0 

• t + v ~ l v  2 i + v t / v  
0 

Ja (4) ~ at (2.9) __f( i  d~ 5] (l 
+ vt/~) +Zt/X) 

1 

The in t eg ra l  r e l a t ionsh ip  (2.5) e x p r e s s e s  the the -  
o r e m  of momen tum.  Equat ion (2.9), l ike (2.5), is 
va l id  for  l a m i n a r ,  tu rbu len t ,  and t r a n s i t i o n a l  flow 
r e g i m e s  when the l iquid does or  does not conta in  i n -  
t e r n a l  heat  s o u r c e s ,  i . e . ,  fo r  all  flow r e g i m e s  for  
which Eqs. (1. 1) are  t rue .  

We mul t ip ly  the f i r s t  of equat ions  (1.1) by v (~ 
and in t eg ra t e  it  with r e spec t  to ~ f r o m  ze ro  to un i ty  
and then,  in  v iew of the r e l a t i onsh ip s  

" i f v(r)~d~ = O, <v> = 2 v(~ d~, 
o o 

1 

S v(~ (o(~ r )  <o>) ~ d~ = o (2. lO) 
o 

and (2.7) we have 

I 

p,R + c i C~176 <0>) 
0 

I 

(2. 11) 

The l a s t  of r e l a t ionsh ips  (2.10) can eas i ly  be ob-  
ta ined f r o m  (2.8). 

Subst i tu t ion  of (2.2) into (2.11) and the p e r f o r m a n c e  
of s e v e r a l  t r a n s f o r m a t i o n s  gives 

i 

R Gp f ]s(~)J~(~)d~ 
2 ( t+Xt /X)~  

0 

1 �9 

(2.12) 

The in t eg ra l  r e l a t ionsh ip  (2.12),  l ike (2.5), is 
va l id  for  all  flow r e g i m e s  for  which Eqs. (1.1) are 
t rue .  The t e r m s  of Eq. (2.12) with accu racy  to the 
cons tan t  fac tor  e xp r e s s  the work of ex te rna l  p r e s -  
su re  f o r c e s ,  the A r c h i m e d e a n  up thrus t ,  and v i scos i ty  
fo rces ,  r e spec t ive ly .  

In the case  of pure  fo rced  convect ion  (2.12) takes 
the f o r m  

1 

0 

(2.13) 

Sub t rac t ing  (2.13) f r o m  (2.12) and taking into 
account  that 

we f ind 

! ( 1  @ --~-) drz(~ d"(r)d~ ~ d ~ =  0 

1 

1 

\~-. i ~ d ~ = O ,  
0 

(2.14) 

3, Velocity distribution. We use the above-derived integral 
relationships to determine the velocity in the case of combined 
forced and free convection. We first find the velocity for forced 
convection. 

If free motion is imposed on the forced motion, the turbulent 
viscosity is altered and, hence, the velocity is also altered. For 
instance, u~ = 20 when R.= 314.25 (R= 104). If we put a = -4.4 
and b = 1.4 in (1.5) and carry out the corresponding calculations we 
obtain u(~ = 35. O. which is 75% greater than the previous value. 
If we take a = 4, 4, b= 1.4, we obtain u(~)(O) = 16.0, i.e., 20% 
smaller. 

The icgarithmic formulas and the one-seventh law, which satis- 
factorily represent the velocity distribution in the core of a turbulent 
flow in a tube, become invalid close to the wall. The formula de- 
termined in [3j, which is true over the whole cross section of the 
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tube, is cumber some  and, hence,  is not at  a l l  conven ien t  to work 

with. Below we obta in  a s imple  and conven ien t  fo rmnla  which  provides 

a good representa t ion  of the v e l o c i t y  dis t r ibut ion over the whole cross 

sect ion of the  tube, inc luding  the  i m m e d i a t e  v i c in i t y  of the wall ,  and 

which satisfies the boundary condi t ion  on the wall .  

We wi l l  seek the v e l o c i t y  prof i le  in the tube  for turbulent  f low in 

the  form 

u ( ~  l~(l-~')], (3 .1)  

where n and a l  are unde te rmined  coeff ic ients .  To d e t e r m i n e  n we 

c a l c u l a t e  the  m e a n  ve loc i ty  <v> over the cross sec t ion  and the t an-  

g e n t i a l  stress r w on the wal l  by using (3. 1) and subst i tute  the va lues  

in the  expression for the  drag coef f ic ien t  ~ ~- 8 r w / p  i v )  ~. On the 
other hand, the  va lue  of the drag coef f ic ien t  can  be found from the 

e m p i r i c a l  Blasius formula  

/ = 0.316 /7-',/' (2.3 10 ~ ~ R % I0 '~) (3 .2)  

or the Fi l ipenko formula  [7] ,  which is su i tab le  for a wide range of 

Reynolds numbers ,  

f = (1.82 lg R -- 1.64) -~ (3.3)  

Equating these values  for the drag coef f ic ien t  we find 

n = ~/~ [(7k - -  8) ~ ] / (7k  - -  4)~ - -  32k1 . (3 .4)  

Here 

k =  0.00988/7% or Ic= 1/ael7 ( 1 . 8 2 1 g R - -  1.64) -e, (3 .5)  

respec t ive ly ,  for f accord ing  to (3.2) or (3,3).  

tl 7 i f*  
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If the turbulent  viscosi ty  in the tube is known there  is no need to 

use e m p i r i c a l  data  for f .  The drag coef f i c i en t  can  be de t e rmined  

from the formula  der ived below (see �82 4). 

To d e t e r m i n e  a1 we can  use re la t ionship  (2.6);  we d e t e r m i n e  

U(~n)ax from (2.6)  and find a r  from the equa l i ty  

% al = u (~ (3.6)  m a x  " 

As heat  transfer ca lcu la t ions  show, (3. 1) is a lmos t  as accura te  as 

the formula  from [3].  I t  4 fol lows from (3.4)  tha t  i f  R = 104, then  

n =  20.6; i f  R= 2 , 5 , 1 0 ,  t h e n n = 4 3 ; i f R =  105, t h e n n = 1 2 8 .  

We find the v e l o c i t y  dis t r ibut ion for combined  l amina r  forced and 

free convec t ion .  The funct ions in  the form of which we seek the 

solut ion must  satisfy the boundary condi t ion  of a t t a c h m e n t  of the 

l iquid  to the walI  and the condi t ion  of c losure of the f r e e - c o n v e c t i o n  

flow. As an approx imat ing  funct ion  we t ake  

u a ) = A ~ ( i - [ D  ( i - - 3 ~ ' ) + A o ( t - - ~ o )  ( 1 - - ' / 3  ~D. (3.7)  

Here A 1 and A 2 are  unknown coeff ic ients .  We subst i tute  func t ion  
(3.7)  and 

u (~ = V~ R ,  (t - -  ~ )  (3 .8)  

into (2 .9)and (2 .14)af te r  put t ing  vt/v = 0 in t hem,  and from these two 

equat ions  we find A~ and A 2. Such ca l cu la t ions  show that  the coef -  
f i c i en t  A 1 must  be found from a quadra t ic  equa t ion  conta in ing  the  
pa ramete r s  GP, Q,, and R,. Then  A~ is de te rmined  from a l inear  
equat ion .  Since the equa t ion  for A1 is quadrat ic ,  then  for g i v e n  
paramete r s  GP and Q we obta in  two va lues  of A t and then we find 

two values  of Az. One pair of the coef f ic ien ts  A 1 and A z (we wi l l  c a l l  

i t  the m a i n  pair) g ives  p r a c t i c a l l y  c o m p l e t e  ag reemen t  with the exac t  

solut ion [8, 9].  The second (subsidiary) pair  g ives  poor ag reemen t  with 

the solut ion in [8, 9].  Of the two coef f ic ien ts  A 1 we must  t ake  the 
smal le r  in modulus  as the m a i n  one. A compar ison with the exac t  

solut ion where the values  of the pa ramete r s  are - 1 0 0  -<- R* -< 104, 

(2* = o,  Q .  = ~t,  / 7 , ,  O.,  - ~t4Q R , ,  O .  = ~lo. R ,  

shows tha t  the grea tes t  dev ia t ion  from the accura te  result  does not 

exceed  0 . 8 % .  In most  cases the dev ia t ion  is much  smal le r .  

  y"~ II i7![t 

F i g .  4 

Since this  method  of solut ion has proved sat isfactory we find the 

v e l o c i t y  for combined  turbulent  forced and free convect ion .  The 

approx ima t ing  funct ion for turbulent  free convec t ion  must  satisfy the 

boundary condi t ion  and the condi t ion  of closure of the f r e e - convec t i on  

flow; i t  must  a im  re f l ec t  the presence  of a la rge  v e l o c i t y  g rad ien t  at  

the  wafI. We put 

u (1) = A t  (t  - -  ~0) (t  - -  ~7/s ~ ) .  (3 .9)  

As u (~ we use formula  (3 .1) .  The drag coef f ic ien t  a c is  de t e rmined  
from the formula  der ived below (see �82 4). The in tegra ls  con ta ined  in  

(2 .9)  and (2. 14) are c a l c u l a t e d  by n u m e r i c a l  in tegra t ion  using (1.3)  

and (1 .4) .  The results of the ca l cu l a t i ons  are as follows~ 

With R, = 314.25,  Pt = 1, P = i we ca l cu l a t ed  u(1)(0) = A 1 by 
means  of (2 .9)  and (2.14) .  The formulas  are of the same type and 

the coef f ic ien ts  in  them do not differ by more  than 5%. The ar i th-  

m e t i c  m e a n  of these coef f ic ien t s  is taken.  In this way we find 

. i l  - -  ( -  3.20 l0  -~ q- 1.80 t0-~ Q,) GI'  
0.7 lO-SaP + 1 -" (3, 10) 

So far we have  ignored dis turbance  or s t ab i l i za t ion  of the layer  

near  the wall .  We wilI  now take  this  in to  account .  The coef f ic ien t  

A 1 is c a l c u l a t e d  by using (2.9) ,  (2 .14) ,  (1. S), (1 .4)  and (1.5)  with 

R ,=  314.25,  Pt = 1, P =  1, a =  4 .4 ,  b =  1.4, 

( - -2 .10" t0  TM g- t .35" t0  -5 (2.) GP 
-1i = - -  0 .6- t0-aGP q- i (3.11) 

With R. = 314.25,  Pt = 1, P=  1, a = - 4 . 4 ,  b =  1.4 we have  

( - -  6.20-i0-~ -~- 2.60.10-SQ,) GP 
,11 - -  0.8"I0-~GP -~ i (3. 12) 

Formulas  (3. ! t )  and (3. 12) are true only for pa r t i cu la r  va lues  of 

R*, s ince for each  R* there  is a par t i cu la r  a (Fig.  2). For other a we 
carr ied  out s imi la r  ca l cu la t ions  and obta ined subsidiary :formulas, 

t l  

  IIIIII 4---a Hil t 
 lllfll I I I'li   

,0* I0 6 /o a 

F i g .  5 

which are  also true for par t i cu la r  R*. In this  way we find severa l  

va lues  of A1, depending on R*. Figure 3 shows the re la t ionship  A 1 = 

= AI(R* ) for different  combina t ions  of va lues  of the pa ramete r s :  

s ( / 7 * > O , Q . = O ,  ~ = o ) ,  

2 ( R * < o ,  ( 2 . = 0 ,  ~ = o ) ,  

3 ( / ~ * > 0 ,  q . = 0 ,  a < 0 ) ,  
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+ (R*<o, Q .=o ,  ~>o) ,  

(n*>o,  q . = o . t  n. ,  . = o ) ,  

6.(R*<O, Q,  = - -  0 . 1 R , .  a : 0 ) ,  

7 (n*>0,  q , = o . i  n, ,  a>O), 

s (R*<0, Q . = - - 0 . t R . ,  a > 0 ) .  

We took in to  account  the re la t ionship  be tween  a and R* accord ing  

to Fig. 2. In every  case P = 1, Pt = 1, R, = 314.25.  In the deduct ion  

of (3. 10) - (3 .12)  we took Q, = const. 

a'~[c I I I IlllllZ/l I I IIIIIll 
I I IIMiY I l ll[llll- I llIillt 

-I IJJhM]II lllIIIIII I IIIIIII 
a z ~  I JIIllll J }lllIfl 

I I l l l N l l l  l l l ~  ll]llllt 
~1 I I tllllll I I]llllH 

I# z fO �9 r 

Fig .  6 

s t ab i l i za t ion  of the wal l  layer  according to (1 .5) ,  then for R, = 314o 2.5. 

a = 4 . 4 .  b = 1 .4  we h a v e y  = 0. 0495, R=  8000, i . e . ,  in  this  case  R 

is 20%0 less than when a = 0. With the same R, and a = - 4 . 4 ,  b = 1.4 

the ca l cu la t ions  give:  ~ = 0. 0102, R = 17 600, i . e . ,  R is increased by 

76%. 

Thus, free convec t ion  affects  the drag through dis turbance or 

s t a b i l i z a t i o n  of the wal l  layer  and this e f fec t  is fa i r ly  s ignif icant .  In 

the case  of turbulent  f low in a ve r t i ca l  tube  the drag can be regu la ted  
by hea t i ng  or cool ing  the wait .  

F igure  4 shows f a s  a func t ionof  R* for R, = 314. 26, Q,  = 0 with due  

regard to  (1 .3) ,  (1.4) ,  (1.5) ,  and Fig. 2. Curve 1 is for R* > 0 and 

curve  2 for R* < 0. 

5. Heat  t r a n s f e r  in a b s e n c e  of i n t e r n a l  hea t  
s o u r c e s .  We ca l cu l a t e  the hea t  t r a n s f e r  in the c a s e  of 
c o m b i n e d  tu rbu len t  f o r c e d  and f r e e  convec t ion  in a 
v e r t i c a l  tube without  i n t e rna l  hea t  s o u r c e s  in the l iquid .  

By def in i t ion  the Nusse l t  number  is  

N ~ 2r~ (5 .  1) 
X(<T>--Tw) " 

4. D r a g  law, We d e t e r m i n e  the d r a g  law fo r  c o m -  
b ined  f o r c e d  and f r e e  convec t ion  in a v e r t i c a l  tube.  
The m e a n  v e l o c i t y  o v e r  the c r o s s  s e c t i o n  of the tube 
wi l l  be 

1 

(~> = 2 ! t~(~ ' (4. 1) 
0 

P e r f o r m i n g  s e v e r a l  t r a n s f o r m a t i o n s  and us ing  
(2.4) ,  (2 .7) ,  and the f i r s t  of e q u a l i t i e s  (2.10),  we f ind 

1 

to2 (P0gq- 0po~( ~Sd~ (4.2) 
<u> 2vpo Oz ] 2 t - } - ~ t / v  

0 

A c c o r d i n g  to the def in i t ion  of the d r a g  coef f ic ien t ,  
we have 

opo 2ro (p0g + (4.3) 
/ ~ 1/~pO <U> z Oz ]" 

E l i m i n a t i n g  the f a c t o r  in the p a r e n t h e s e s  f r o m  (4.2) 
and (4.3) we obta in  

1 

7 =  16Jt+~t /v '  (4.4) 
0 

Using  the  second  of Eqs .  ( 1 . 1 ) w e  find the  hea t  
f lux d e n s i t y  qw on the wa l l  fo r  Q. = 0: 

qw = - 1/2 p C w 4 r o  <v) . (5.2) 

Subs t i tu t ing  into (5.1) equa l i ty  (5.2) and the e x p r e s -  
s ion  fo r  the mean  t e m p e r a t u r e  a c c o r d i n g  to hea t  con-  
ten t  

1 

< T )  - -  T ~  = 2 I ( T  - -  T~,) w(O,~)~d~ (5. 3) 
0 

and tak ing  into account  the r e l a t i o n s h i p  

v. = <v> 1/7/8 , (5.4) 

we obta in  

1 1 

-~- = 2 J( l  + Pl~t/v)~ ' 
[} 0 

Equa l i ty  (5.5) is  va l id  fo r  a l l  f low r e g i m e s  f o r  
which Eqs.  (1.1) a r e  t rue  in the c a s e  Q, = 0. 

Using (5.5)  we can find how the hea t  transfer is af fected by the  

free  mot ion  superimposed on the forced mot ion .  We consider f i r s t  

the combina t i on  of l amina r  forced and free convect ion.  

It fo l lows  f r o m  (4.3) and (2.7) that  

[ l  = 17 ],1 ~/82/ . (4. 5) 

If we e l i m i n a t e  the Reyno lds  n u m b e r  R f r o m  (4. 4) 
and (4. 5) we f ind 

f --- 8 / JZ R .2  , (4.6) 

w h e r e  J deno tes  the  i n t e g r a l  con ta ined  in (4. 4). If the 
p a r a m e t e r  R,  o r  (P0g + 8P0/Sz) i s  p r e s c r i b e d ,  we f ind 
the i n t e g r a l  J by n u m e r i c a l  i n t e g r a t i o n  and then,  a c -  
c o r d i n g  to (4. 6), we f i n d f .  A f t e r  f inding J and f ,  we 
can  d e t e r m i n e  R f r o m  (4.4) o r  (4.5).  

Equal i ty  (4 .4)  is va l id  for l aminar ,  tu rbu len t ,  and t rans i t iona l  flow 

reg imes .  In the case  of l amina r  f low we can  der ive  the Poiseui l le  

formula  from (4,4):  

t / / = 11s~ R.  (4 .7 )  

We c a l c u l a t e d  f and R for R ,=  314.25,  using (1.3)  and (1.4) ,  and 
4 

found tha t  f = 0. 0316, R = 10 . If we take  into account  dis turbance or 

a~etC_ltllltlll IAlllltLI IlllllW 
azF1 I I tliIIL~ I I ItlIl~n~'TTl[lll 

�9 I [ l ~ r  l lIIHlll  
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Fig. T 

If the  flows of forced and free convec t ion  at  the wal l  are counter-  

current  (R* < 0), then  the m e a n  t empera tu re  of the l iquid  increases  
[ in fo rmula  (5.5)  in this  case  J s ( ~ ) >  0],  which, as (5.1)  shows, leads 

to a reduc t ion  of N. If the flows at  the wal l  are co ine idem (R* > 0), 

then  the m e a n  t empera tu re  of the l iquid decreases [in (5 .5)  Js (~ )  < 
< 0] ,  which leads to an increase  of N. At the same t i m e ,  free con-  
vee t ion  superimposed on forced convect ion,  with the adopted as- 
sumptions (averaged  v e l o c i t y  pa ra l l e l  to tube  axis, constant  ve r t i ca l  

t empe ra tu r e  g rad ien t  on walls),  does not affect  the hea t  flux densi ty  
on the wal l .  This is apparent  from (5.2)  a t  least  [see also [8] ,  Chap. 

3, w 
The re la t ionship  be tween the Nusselt number  N and the  Rayle igh  

number  R* was c a l c u l a t e d  from (5 .5)  for R* > 0 and R* < 0. We 

used the formula  f = 64R-' or the re la t ionship  der ived from i t  and 
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(5.4), viz.. 2R= R. z, which is valid for laminar forced flow, and 
also for combined laminar forced and free flow (�82 4). The relar/on- 
ship between N and R* calculated in this way agrees almost com-  
pletely with that found in [9, 10]. The curves representing this 
relationship for R* > 0 and R* < 0 agree satisfactorily with the ex- 
perimental  data given in [9, 10]. In the case of turbulent motion 
as (5.5) shows, free convection affects the heat transfer in two ways. 

If the flows of forced and free convection at the wall are counter- 
current (R* < 0), the turbulent viscosity at the wall is increased and 
this intensifies heat  transfer. On the other hand, in this case the 
mean  temperature of the liquid is increased, which leads to a re- 
duction of N. Calculation or experiment  would show which of these 
factors predominates, 

If the flows at the wall are coincident (R* > 0) the turbulent 
viscosity at the wall is reduced and N is also reduced. In this case, 
however, the mean  temperature of the liquid is reduced, which 
leads to an increase in N. 

We calculated the Nusselt number for R~ 314.25, Pt = 1, P = 1, 
b = 1.4, a = 4 .4  (the flows at the wall are countercurrent). The 
result was as follows: N = 34.9, i. e . ,  1% greater than when a = 0. 
When R, = 314.25, Pt = 1, P = 1, b = 1.4, a = - 4 . 4  (the flows at 
the wall are coincident) the number N = 25.9,  i . e . ,  25% less than 
when a = O. 

Figure 5 shows N as a function of R*; curve 1 is for the case R* > 0 
and curve 2 for R* < 0. In the calculations we took into account (1.3), 
(1.4), (1.5), (1.6), and (1.7). 

A comparison of the heat  transfer in laminar and turbulent flow 
regimes clearly shows that in the case R* > 0 free convection inten- 
sifies heat  transfer in a laminar flow and reduces it in a turbulent flow. 
In the case R* < 0 free convection reduces heat  transfer in a laminar 
flow and increases it in a turbulent flow. This can be attributed to 
the fact that in the case of laminar flow one factor due to free con- 
vection affects the heat  transfer, whereas in the case of turbulent flow 
there is a second effect (disturbance or stabilization of the wail layer), 
and this second effect predominates. 

When the parameter R. has values greater than 314.25, free con- 
vection will be comparable with forced convection at higher Rayleigh 
numbers than when R, = 314.25. Hence, for R, greater than 314.25, 
the curves N = N (R*) will be like that illustrated in Fig. 5, but will 
be shifted upwards and to the right. 

6.  H e a t  t r a n s f e r  i n  p r e s e n c e  o f  i n t e r n a l  h e a t  

s o u r c e s .  I n  [11]  a n  i n t e g r a l  L y o n  r e l a t i o n s h i p  f o r  

c a l c u l a t i n g  h e a t  t r a n s f e r  i n  t h e  a b s e n c e  o f  i n t e r n a l  

h e a t  s o u r c e s  i n  t h e  l i q u i d  w a s  e x t e n d e d  to  t h e  c a s e  o f  

a l i q u i d  c o n t a i n i n g  h e a t  s o u r c e s .  T h e  f l o w  of  l i q u i d  in  

t h e  t u b e  w a s  a s s u m e d  to  b e  p u r e l y  f o r c e d .  W e  e x t e n d  

t h e s e  i n t e g r a l  r e l a t i o n s h i p s  to  c o m b i n e d  f o r c e d  a n d  

f r e e ' c o n v e c t i o n  in  a v e r t i c a l  t u b e .  

I n t e g r a t i n g  t h e  e n e r g y  e q u a t i o n - - t h e  s e c o n d  o f  E q s .  

(1. D - - i n  t h e  c a s e  o f  u n i f o r m l y  d i s t r i b u t e d  i n t e r n a l  h e a t  

s o u r c e s  o f  p o w e r  Q a n d  c o n s t a n t  h e a t  f l u x  d e n s i t y  q w  

o n  t h e  w a l l  w e  f i n d  

T - -  T~ 2qwr0 ~ Jo (~) d~ = - - - v - j  (~ ~-~xt/~) ~ + 
i 

§ ~ J,(~)d~ (6. i) 
k J ( l + z ~ / z ) ~ "  

I 

S u b s t i t u t i n g  ( 6 . 1 )  i n t o  t h e  e x p r e s s i o n  f o r  t h e  m e a n  

t e m p e r a t u r e  a c c o r d i n g  to  h e a t  c o n t e n t  ( 5 . 3 )  a n d  p e r -  

f o r m i n g  s e v e r a l  t r a n s f o r m a t i o n s  w e  o b t a i n  

( T > - - T  w -  4qwr~ d Ya~(~)d~  

-- ~--)~---D ( t + z t / X ) ~  o 
1 

Z oJ (i - i-) : t lx) ~ " ( 6 . 2 )  

W e  p u t  q w  = 0 in ( 6 . 2 )  a n d  t h e n  w e  h a v e  

I 
(T>-- T~-- 2Qr6 2 ~ Y6(~)JT(~)d~ (6.3) 

w h e r e  T a w  d e n o t e s  t h e  a d i a b a t i c  w a l l  t e m p e r a t u r e .  

If  w e  a s s u m e  t h e  d e n s i t y  o f  t h e  i n t e r n a l  h e a t  s o u r c e s  

t o  b e  a r b i t r a r y  o v e r  t h e  c r o s s  s e c t i o n  o f  t h e  t u b e ,  

s i m i l a r  c a l c u l a t i o n s  w i l l  g i v e  

<T> -- Ta~ = -- - 

1 
2ro ~ ~ _ _  1 ] e ( ~ ) •  

o 

x [2J~ ( ~ ) i Q ~ d ~ - - i Q ~ d ~ I d ~  �9 
o o 

(6.4) 

W e  n o w  s u b t r a c t  ( 6 . 2 )  f r o m  ( 6 . 3 )  

T w - - T a w = -  4qwr~ i 362 (4) d~ 

o 
(6.5) 

I t  i s  c l e a r  f r o m  ( 6 . 5 )  t h a t  w h e n  t h e  l i q u i d  c o n t a i n s  

i n t e r n a l  h e a t  s o u r c e s  t h e  h e a t  f l u x  d e n s i t y  q w  o n  t h e  

w a l l  w i l l  b e  p r o p o r t i o n a l  to  t h e  t e m p e r a t u r e  d i f f e r e n c e  

( T a w  - T w )  , a n d  n o t  t h e  d i f f e r e n c e  ( < T >  - T w )  , a s  i s  

t h e  c a s e  i n  t h e  a b s e n c e  o f  s o u r c e s .  F r o m  ( 6 . 5 )  w e  

h a v e  

1 

N *  - -  2 " qw2r~ (6.6) 

Here N* is the Nusselt number. 

If the heat transfer coefficient (~ is referred, as 

usual, to the temperature difference (< T) - Tw) , the 

Nusselt number will be 

1 
t 2 ! - _ _ J 6 2  (~) d~ 

-N-= (i+zt/x)~ 

Here z I is the relative density of the internal heat 
sources. 

At a certain value of zl the Nusselt number, de- 

termined from (6.7), will become infinite. Hence, in 

the case of internal heat sources in the liquid the heat 

transfer will be characterized not by N, but by the 
ratio [ii] 

(Taw -- <T>) 

AT a = Q~---v (<T> -- r.~). (6. s) 

Here AT a is the dimensionless difference between 

the mean calorimetric temperature of the liquid and 

the adiabatic wall temperature; N 0 is the Nusselt num- 

ber for a flow without internal sources. In [11] the 

relationship between this quantity and the Reynolds 

and Prandtl numbers was calculated for pure forced 
turbulent flow. Below we give the results of aaleula- 
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t i o n s  of  t h e  r e l a t i o n s h i p  b e t w e e n  t h i s  q u a n t i t y  a n d  t h e  

R a y l e i g h  n u m b e r  i n  t h e  c a s e  o f  c o m b i n e d  f o r c e d  a n d  

f r e e  c o n v e c t i o n  i n  a v e r t i c a l  t u b e .  
Figure 6 shows 

C ~_ (Taw -- <T>) 
(Taw - -  Tw) Z~ (6.9) 

as a function of R* for combined laminar forced and free convection 
in a vertical tube with Q,= :~R,/4; curve 1 is for R* > 0, Q,= R, /4  
and cu rve2  forR*< 0, Q , = - R , / 4 .  We note that Q ,<  O when 
R* < 0, although the heat  sources are positive (Q > 0). When R *--> 0, 
C tends to the l imit  3/11, corresponding to pure forced laminar flow. 
Since Q, is prescribed, then z t will be determined from the relation- 

ship 

z~/(z~-- t) = Q, t Z ~ 8  ] �9 (6.10) 

In the deduction of (6.10) we used (6.11). Relationship (6. 10) 
applies to both laminar and turbulent flows. 

In the case of combined forced and free convection, as distinct 
from pure forced convection, the source density Q, has to be pre- 
scribed if the coefficients in the expression for the free convection 
are to be found. 

The quantity C is equal to the ratio of the integrals contained in 
expression (6.7). In combined turbulent forced and free convection 
C is affected by the same two factors which affect N in the case of 
the absence of internal sources. If the heat  flux density is positive 
and sufficiently high (for instance, Q, = 0 .1R,) ,  then the liquid in 
the center of the tube will be hotter than at the wall and, hence, 
when/3 > 0 free convection will be upward in the center of the tube 
and downward at the wall, irrespective of the sign of the Rayleigh 
number. If the forced convection of the liquid is upward (<v> > 0), 
then at the wall the flows will be countercurrent. This is obvious 
from expression (3.10) and from Fig. 3. 

Taking into account the correction to the turbulent viscosity, 
accordingitO (1 .5 ) - (1 .7 ) ,  we calculated f ,  R, al, n, and A1 from 
the corresponding formulas, and then the value of C from (6.9) for 
P = 1, Pt = 1, R,= 314.25, Q,= + 0 . 1 R , .  Figure 7 shows the calcu-  
lated relationship between C and R*. Curve 1 is for R* > 0 and Q, = 
= 0.1R,; curve 2 is for R* < 0 and Q ,=  - 0 . 1 R , .  In both cases the flows 
at the wad are countercurrent and, hence, in both case a > 0 in 

expression (1.5). 
We find the density of internal heat  sources in the flow of a liquid 

through a tube without heat  transfer--the wails are thermally insulat-  
ed. In this case the quantity of heat  from the sources per unit volume of 
the liquid is equal to the amount of  heat  removed by the flow from unit 

volume. 
Integration of the energy equation with Q = const gives 

1/2 pcpAro <v> = -- qw + X/2Qr0, (6.11) 

Putting qw = O and using (5.4) we find 

Q,  = ]/-8-'77 . (6.12) 

The drag coefficient f is found from formula (4.6). 
For laminar flow--forced convection or combined forced and free 

convection--(4~ is valid.  Then (6.12) gives 

Q. = g ~ ] ~  = ~/4 a . .  (6. in) 

In the case of turbulent flow for R, = 314.25, according to (4.6), 
we have ] =  0. 0316 and, using (6.12), we find Q. = 15.9, i. e . ,  

approximately R. /19 .75.  
Thus, the procedure for the solution of the posed problem is as 

follows. From the given value of dp0/dz we find R, from expression 
(2.7). Using the parameter R. we find jc and R from formulas (4 .4 ) -  
(4.6) and u( ~ )(0) from formula (2.6). From the found value of the 
Reynolds number R we determine the index n from (3.4). Knowing 
u (0)(0), we calculate al  from (3. 6). From the prescribed parameters 

P, Pt, and R, we find the coefficient A r, i. e . ,  an expression of the 
form (3.10), by using the integral relationships (2.9) or (2. 14). We 
find the correction to the turbulent viscosity due to disturbance or 
stabiIization of the viscous wail layer by menas of (1.5) for any a,  
e . g . ,  a = 4 .4 .  Using this correction we again find f ,  R, e l ,  and n 
from the above-mentioned formulas and calculate expressions of 
the form (3. 11), each of which is true only for a particular value of 
R*, since for each R* there is a particular a. Using an expression of 
the form (3.11) with prescribed Q, we determine the value of the 
Rayleigh number Ri* for which free convection is equal to the forced 
convection, i . e . ,  u (~)(0) = u (~ we determine the position of the 
curves in Fig. 2. In this way we find several values of A1 in relation 
to R*. 

To determine the heat  transfer in the case of absence of internal 
hea t  sources we calculate the integral (5.5) with introduction of the 
correction to the turbulent viscosity. In the case of the presence of 
internal heat  sources we must first find the correction to the turbulent 
viscosity from the prescribed P, Pt, R,, and Q~, as in the case Q, = 
= 0; we then find C, which characterizes the heat  transfer in the case 
Q. ~ 0, from (6.9). 

The author thanks G. A. Ostroumov, E. M. Zhukhovitskii, and 
B. S. Petukhov for discussion of this work. 
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